CONVECTIVE STABILITY OF A MEDIUM CONTAINING
A HEAVY SOLID ADDITIVE

O. N. Dement'ev UDC 532.529

Two problems of convective stability in a medium containing settling heavy solid particles are
discussed. A study is made of the stability of steady convective flow of a medium containing an
additive between vertical plates heated to different temperatures and also of the stability of a
flat layer of a medium containing an additive which is heated from below. It is shown that the
presence of settling solid particles has a significant stabilizing effect on convective stability.

The stability of isothermal plane-parallel flows of an incompressible gas transporting a small amount of
solid particles was studied in [1-4]. The transporting medium and the additive were considered as interpene-
trating and interacting continuous media; interaction between particles was neglected. A formulation of the
problem of flow stability based on these concepts was first given in [1] where stability of motion in a plane
vertical channel was considered for a fluid containing an additive. The stability of convective motion of a me-
dium transporting a solid additive in a layer between vertical plates heated to different temperatures was
studied in {5] where the settling of the particles was neglected, as was the case in [2-4].

The effect of suspended solid particles on the equilibrium stability of a horizontal layer of a gas heated
from below was considered in [6]. Particle settling and the displacement force acting on the particles were
neglected. The existence of thermal equilibrium between particles and gas was assumed, i.e., the simple lim-
iting case of an infinitely short temperature relaxation time T was considered. Under the assumptions de-
scribed, the effect of particles present in a layer reduces to a2 mere renormalization of the heat capacity of
the gas and so to a trivial renormalization of the Rayleigh number also.

In the following, a study is made of the effect on convective stability of all factors characterizing the
added particles: the rate of particle settling ug, the velocity and temperature relaxation times for the parti-
cles (or, which comes to the same thing, their size, density, and heat capacity), and the mass concentration a
of the additive.

§ 1. We consider an incompressible fluid containing a cloud of spherical nondeformable particles of
identical mass m and radius r. The density p; of the particle material is much greater than the density p of
the transporting medium. The volumetric particle fraction is f<« 1 and therefore interactions between parti-
cles can be neglected. The mass concentration a of the particles is not assumed small and can reach a value
of 0.2. In this case, one cannot consider the Einstein correction to the viscosity of a fluid, which is propor-
tional to the volumetric concentration f of an additive. The displacement force acting on a particle is negligi-
bly small since it is proportional to the ratio p/p;. The particles are large enough to exclude participation in
Brownian motion; there is no pressure associated with the particle cloud. Interaction force between phases
during their relative motion is described by Stokes' law.

Equations describing the behavior of a medium containing a cloud of solid particles were given in {7, 8].
Based on those equations, equations were obtained [5] in the Boussinesq approximation [9] for the free con-
vection of an incompressible medium with a heavy additive:

ou/ot + (uyju = — yplo +vAu +a/tfu, — u) — (1 + a)gp”, 1.0
Oup/dt L-((up + w)yhup = — (1/1,)(up — u),
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ATIot 4-uyT = yAT 4 (ab/rr YT, — T),

T plot + (up +uyyTlp = — (/tg)(Tp — T),
diva = 0, 0N/3¢ + diviN(up, 4-u))f= 0,

T, = m/barvp, Tr = mblinryp, u, = mg/Gurvp,

a=pplp9 b:CI/C: Pp=Nms

where u is velocity; T is temperature; p is the pressure of the fluid measured with respect to the hydrostatic
pressure renormalized because of the presence of settling particles; ¢ is the heat capacity of the fluid at con-
stant pressure; 8, v, and X are the coefficient of volume expansion of the fluid, its kinematic viscosity, and
thermal diffusivity; g is the acceleration of free fall. Quantities with the subseript p refer to the cloud of par-
ticles, where uy, is the velocity acquired by the particles as a result of their interaction with the moving fluid
measured with respect to the rate of particle settling ug; ¢; is the heat capacity of the particle material; N is
the number of particles per unit volume.

The quantities Tp and T, have the dimensionality of time and are, respectively, thetime required for the
temperature difference between fluid and particles to decrease by a factor e and the time required for the ve-
locity of the particles relative to the fluid to decrease by a factor of e in comparison with its original value.

§2. We consider convective motion of a fluid containing an additive in a plane layer between infinite
parallel vertical surfaces at x= +h; which are maintained at the constant temperatures —® and @, respectively.
The particles, the concentration of which is uniform, move through the fluid.

We obtain a steady-state solution of the equation system (1.1) describing plane-parallel convective mo-
tion in such a structure,

uy =uy, =0, u, = un(z)%, Ty = Tolx), po = pol2), (2.1)
Upy = Upy = 0, Up, = upe(2), Tpy = Tpelx), Ny = const

[the subscript 0 denotes a steady-~state solution of the system (1.1)].
Using Eqgs. (2.1), we obtain from (1.1) the system of equations
vduyldz? 4 (1 + a)gBTo = (L/p)dpy/dz == ¢, upy = uy; (2.2)
d2Toldx* = 0, Tpy = T, (2.3)
where ¢ is the constant'of separation of variables. To determine u,, T,, and p,, we used the boundary con-
ditions
uf+h) =0, To(£ h) = F O (2.4)

and the closure condition for convective flow

h
[ updz = 0. (2.5)

—h

We obtain from Eqgs. (2.2)-(2.5) the distributions of velocities and temperatures of the fluid and particle
cloud over a section of the layer:

up = (1 + a)(gPpOr/6v)(x3/h* — z/h), (2.8)
Upy =ty +u,, Ty = Tpy = —(0/h)x.

As is clear from Eqgs. (2.6), the presence of added particles leads to renormalization of the velocity
profile of the fluid in comparison with the case of a fluid without an additive [9].

§3. We investigate the stability of the steady-state motion of a medium containing a heavy additive as
defined by Egs. (2.6). To do this, we consider the perturbed fields for velocity, temperature, pressure, and
number of particles per unit volume, uy+u, Ty+T, Upy+up, Tpy+ Tp, Py+p, and Ny +N, where u, up, T, Tp, p,
and N are small perturbations.

We write the equations for the perturbations in dimensionless form, using the following units of mea-
surement: distance h, time h?/y, velocity v/h, pressure pr2/h?, and temperature ®. Linearizing over the
perturbations, we obtain from Egs. (1.1)
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du/ot 4 (uy)u, + (wpy)u = — yp + yu+ yGrT + (a/vo)(u,—u); 3.1

dup/dt + (upylu, + ((up + u)vup = — (L1 )(up — u);
AT/0t 4 uyTy - u,yT= (1/Pr)yT ~ (ablt7)}(T), — T);
0T pl0t +u,yTy 4 (uy +u))yTlp = — (M7 — T);
divu = 0; gN/ot - diviN(u, L u,) & Nyl =0,

v, = —Gatyy, vy = (Gr/6)(=* — )y, Ty == — 1,

T = 2/9r/MXp /o), 1T = (3/2)bPr1,,
Ga == gh*/v®, Gr = (1 -~ a)gfOh*/\2, Pr - - vy,

where Ga, Gr, and Pr are the Galileo, Grashof, and Prandtl numbers; 7y and T are now dimensionless re-
laxation times; y is a unit vector directed vertically upward.

As in the case of a pure fluid {9, 10], one can show for a medium containing an additive that the problem
of stability with respect to spatial perturbations reduces to the corresponding problem for plane perturbations.
Plane perturbations are more dangerous in the case of vertical orientation of the layer, i.e., lower Grashof
numbers are associated with them. Consequently, it is sufficient to confine the investigation to plane pertur-
bations in a study of stability.

We consider plane normal perturbations

Uy = — N0z, u. -= dgox,
Yz, 5,1) = qlr)explik(z — eNl. L. 2, 1) = 6(x)explik(z — ct)], ' 3.2)
uplx, 2, £}y = vpx)explik(z — el up.lr, 5, t) == vy (2explik(z — c)],

where ¢ is a stream function; ¢, 9, vpx, andvpz are the amplitudes of the perturbations; k is a real wave num-
ber; c=cp+icj is the complex phase velocity of the perturbations ¢y is the phase velocity, ¢; the decrement).

Substituting Eqs. (3.2) into Eqgs. (3.1), we obtain a system of amplitude equations (primes denote differ-
entiation with respect to x)

[yIV — 282" - L"(;) — k(" — F¢)(uy—¢) - Gro = iky uy - - 0;

(3.3)
e (07 — [20) — 10 (11, — ) - kT = 0,
where
Uy = ug + aluy +u,— o)/ It ikt (g — u, — o)l
uy = Uy + abluy + u, — )1 - ihrp(uy -+ uy —o));
A =1 Lab/{ld 4 ikt (uy - uy — O 4 ihte(uy + vy — )1},
Boundary conditions are
p=¢ =0=0 for z--+1 (3.9

The boundary-value problem (3.3), (3.4) determines the spectrum of characteristic perturbations and
their decrements. The complex phase velocity ¢ depends on seven independent parameters of the problem:
the Grashof, Prandtl, and Galileo numbers; the wave number k; the mass concentration ¢ of the additive; and
the relaxation times TT and Ty. The limit of stability for steady-state flow is determined from the condition
Ci =0. '

To solve the resultant boundary-value problem, i.e., to determine the decrement spectrum and the flow
stability limits, the Runge —Kutta—Merson method of stepwise integration was used with orthogonalization of
solutions at each step in the integration [11, 12]. The method used made it possible to carry out calculations
to sufficiently large values of the problem parameters: Gr~10°, Pr~ 102, Ga ~ 10°.

§ 4. Calculations performed over a broad range of values of the Prandtl number (10~% = Pr = 10% showed
that steady-state motion of a medium containing an additive [Egs. (2.6)] has two forms of instability. The first
is associated with flow structure through the existence of two opposing flows, the interaction between which
leads to loss of stability. The second form of instability is produced by the buildup of thermal waves in the
flow at sufficiently large Prandil numbers Pr= Pr, (Pr, ~ 11).

For values of the Prandtl number less than the critical value, Pr < Pr,, the instability of the steady-
state motion of a fluid containing an additive is caused by the lowest modes of hydrodynamic perturbations
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(thermal perturbations become more dangerous when Pr>Pr,). The effect of thermal factors on this form of
instability is insignificant. Settling particles produce oscillational (traveling) perturbations and facilitate
their transport. Consequently, the ‘instability associated with the lowest hydrodynamic modes of the pertur-
bations is oscillational. The instability of steady-state motion of a pure fluid for Pr <11.4 is associated with
monotonic perturbations [9, 13] just as in the case of a fluid containing an additive with a settling rate that can
be neglected in comparison with the velocity of steady-state flow of the fluid [5]. Since the instability mecha-
nism is the same in all three cases, this form of instability of the motion of a medium containing an additive
can be called quasimonotoniec.

We consider quasimonotonic instability of the steady-state motion (2.6). Its limit varies little for
changes of the Prandtl number over a wide range (10"2=Pr=30). The critical stability region has a clearly
expressed hydrodynamic nature.

Figure 1 shows the dependence of the minimum critical Grashof number Grm on the Prandtl number for
the following values of problem parameters: a=0.05, Ga=43,600 (b=2.7, p;/p =415). Curve 1 corresponds to
Ty =0.0049 (r/h=0.0073) and curve 2 to T,=0.00083 (r/h=0.003). I is clear that an increase in particle size
leads to considerable stabilization of flow (curve 2 practically coincides with the corresponding curve for a
pure fluid [9]). The perturbation phase velocity cym (cp < 0} corresponding to the minimum critical Grashof
number Gry, also changes insignificantly as Pr varies (cpy, ~ —5.25). The critical wave number ky, corre-
sponding to Gry, depends slightly on Prandtl number (kyy =~ 1.15).

The dependence of the minimum critical Grashof number Gry, on the mass concentration a of the ad-
ditive turns out to be linear. The number of particles per unit volume increases with an increase in a for
Ty =const (r =const, py/p =const), i.e., the influence of the additive on flow stability grows. The minimum
critical Grashof number Gry, increases from 500 to 1050 with an increase in the mass concentration ¢ from 0
to 0.1; the critical phase velocity ¢y, falls from 0 to —12 and kyy, decreases linearly from 1.42 to 1.00 (Ga=
43,600, Pr=0.73, 7, =0.0049, T7=0.0145). The additive facilitates dissipation of perturbation energy in some
frequency range during the interaction of inert particles with velocity pulsations. Long-wave perturbations
become responsible for the critical region of flow.

Figure 2 shows the dependence of the minimum critical Grashof number Gry, and of the critical wave
number ky, on the radius r of the added particles (r denotes the dimensionless radius of the particles) for two
values of the mass concentration a of the additive, Curve 1 corresponds to ¢ =0.1 and curve 2 to a =0.05 for
Ga=43,600, Pr=0.73 (b=2.7, p;/p =415). These values of problem parameters correspond to wood dust in air.
An increase in the particle radius r for a = const leads to a clearly expressed stabilization effect on flow up to
a eritical value r+® 0.0079 after which the stabilizing effect decreases with increasing r. Here two opposing
factors are competing [2]; increase in particle size leads to additional dissipation of perturbation energy, but
the number of particles is reduced in this case (a =const, p;/p =const), i.e., their influence on flow stability is
weakened. The nature of the dependence of the critical wave number ky, on particle radius is evidence that
stabilization of flow is produced through suppression of dangerous perturbations by the particles. The curves
reflecting the dependence of the value of the critical phase velocity lcrml of the perturbations on particle ra-
dius have a shape similar to the curve for Gry, = Gry(r) in Fig. 2. For r=0.0075, the critical phase velocity
has the minimum value ¢pm=—12.2 (@=0.1, Ga=43,600, Pr=0.73, b=2.7, py/p =415).
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§5. We consider oscillational instability of steady-state motion, i.e., an instability created by the lowest
thermal modes of perturbations which are built up in the flow by thermal waves. In contrast to quasimonotonic
instability, oscillational instability is essentially associated with the nonisothermal nature of the flow. In the
case of a pure fluid, oscillational instability is produced by a pair of complex-conjugate decrements [9]. Ther-
mal waves which are propagated both upward and downward in the flow with identical absolute values ofthe
phase velocity are equally possible. Settling solid particles, which produce perturbations that travel down-
ward along the layer, make that direction most favorable for the propagation of perturbations. Now the per-
turbations traveling downward havea greater absolute value of the phase velocity than the perturbations trav-
eling upward. Inclusion of particle settling leads to the removal of the degeneracy of thermal decrements.

In such a case, one can speak of two neutral curves of oscillational instability corresponding to a pair of the
lowest thermal decrements.

As in the case of a pure fluid [9, 13], a shift in the form of instability occurs when Pr > Pr, (Pr,~11)
with the oscillational perturbations becoming most dangerous.

Figure 1 shows the dependence of the minimum critical Grashof number Gry, on the Prandil number Pr
(instability with respect to oscillational perturbations). The problem parameters are the following: « =0.05,
Ga = 43,600, 7,=0.00021 (b=2.7, r=0.0015, p,/p =415, ug=—9.05). Curve 3 corresponds to a perturbation phase
velocity cr <0 and curve 4 to ¢y >0. As the Prandtl number increases, flow stability with respect to oscilla-
tional perturbations decreases up to Pr~57 and then begins to increase. Up to Prandtl numbers Pr~ 40, per-
turbations traveling upward along the layer are mostdangerous, and perturbations traveling downward be-
come more dangerous when Pr>40.

Figure 3 shows the dependence on Prandil number for the critical wave number ky and for the absolute
value of the phase velocity ¢y, The problem parameter values correspond to those for curves 3 and 4 in
Fig. 1.

The dependence of the critical numbers ky, and Gry, on particle radius r is shown in Fig. 4, Curve 1
corresponds to negative perturbation phase velocity (decrement vy and curve 2 to positive phase velocity (dec-
rement vy). Values of the problem parameters are as follows: a =0.05, Ga=43,600, Pr=30 (py/p =415, b=2.7).
The stabilizing effect of the additive on the stability of steady-state motion of the fluid increases as particle
size increases. The absolute values of the phase velocities of perturbations traveling both upward and down-
ward along the layer increase rapidly with increase in r. It is clear from a comparison of Figs. 2 and 4 that
the added particles suppress thermal perturbations considerably more effectively. The stability of steady-
state convective motion of a fluid with respect to quasimonotonic perturbations can be increased by a factor
of 2-2.5 by adding heavy particles (@ =0.2) to the flow and by a factor of more than 10 with respect to oscil-
lational perturbations.

A comparison of these results with the results of [5] shows that settling particles produce a consider-
ably greater stabilizing effect on steady-state flow of a fluid than suspended particles. In fact, neglect of par-
ticle settling rate in comparison with the velocity of steady-state flow of a fluid is only valid for sufficiently
fine particles of not too great a density (with respect to the density of the transporting medium). Coarsedense
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particles are more inert than fine particles, and it is impossible to neglect their settling rate. The particle
slip rate with respect to the fluid is of the order of the quantity ug. The resultant relative motion of fluid and
particles leads to additional dissipation of perturbation energy in comparison with the case of suspended par-
ticles.

§ 6. We consider a horizontal plane layer of incompressible fluid or gas bounded by infinite solid sur-
faces at z= =1, The layer is heated from below. Particles, the concentration of which is uniform (N, =const),
enter the layer through the upper surface. The particles seftle and therefore there is transverse motion of the
additive with a uniform vertical velocity ug in the unperturbed state in the layer. We assume that heating of
particles at the lower surface does not occur. In'fact, the volumetric concentration of the additive is f« 1, and
the change in layer thickness because of settled particles is insignificant. One can also assume that the lower
bounding surface is permeable for the particles.

We determine steady-state distributions of the temperatures T, of the gas and Ty, of the particle cloud
in the absence of convective motion in this two-phase system [the subscript 0 now denotes a steady-state so-
lution of the system (1.1) with u;=0]. To accomplish this, it is necessary to solve the dimensionless equations
of thermal conductivity obtained from the appropriate equations in the system (1.1) written in dimensionless
form with uy=0 (in this case, it is convenient to select x/h and ppx/ h? | respectively, as units of velocity and
pressure),

4 ab Pr
Ty + rm

(Tpo— To) = 0, u,Tro + % (Tpy—Tg) =0 (6.1)

(the primes denote differentiation with respect to z).
Boundary conditions are
To=F bfor z-=+1; T,=—1for z:==1. (6.2)
Particles enter the layer with a temperature equal to that of the upper boundary.

The temperature distributions in the gas layer and in the particle cloud during steady-state transverse
motion of the additive have the form

T, = aylexp(ly(z — 1)) — 11 + aplexp(hs(z — 1)) — 1] — 1; (6.3)
Tpo = ayl(ky/abuy)exply(z — 1)) — 1] 4 aul(ko/abu,yexp(hoz — 1))—11—1,
where

ay = 2/ 11 — exp (—2k) Wky—1); @y = 2/[1 — exp(—2k)N1/k; — 1);

k P _Pr \2  Prab, [ Pr / Pr \2 Prabh
1 PLET 2v + Tp 2T 2t l/ (ZTTus) + Ty

By = [1 — exp(—2ky) 1711 — exp(—2k)] - [abu, — k)/(abu, — k)l

Tn the limiting case of suspended particles (ug=0), we obtain from Egs. (6.1) and (6.2) a vertically linear
distribution of the temperatures, Tpy=Ty=—z. As is clear from Eq. (6.3), the temperature distributions in
the gas and particle cloud are different from linear when the particle settling rate is nonzero. The distortion
of the linear distribution of gas temperature increases with an increase in the particle settling rate and also
with an inerease in the mass concentration and relative heat capacity of the particles. With further increase
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in the parameters listed, a tendency toward the formation of a boundary layer within which the main change in
gas temperature is concentrated is noted at the lower boundary.

§ 7. To study the convective stability of an equilibrium layer of a medium containing settling particles,
we consider the perturbed fields for velocity, temperature, pressure and particle number, u, uptug, To+ T,
Tpg* Tps Pt D, and Ny +N, where u, up, T, Tps Dy and N are small perturbations. Equations for the perturba-~
tions can be obtained from (1.1) by linearization over the perturbations. Eliminating the pressure and the x, y
components of the velocities of the gas and particle cloud from these equations in the usual manner, one can
obtain equations for the vertical components of the perturbation velocities uy(x, y, z, t) and 7%, ¥, z, 1) and
for the temperatures T(x, y, z, t) and Tp(x, y, z, t). We consider normal perturbations of the form

uy == v(zyexp [— At = i(kx = k)l {7.1)
Up, = vy{g)exp [— A L i(hz - Ey)l;

T = 0(z)exp [— At +i(kyr — k)],

Ty = 0p(zyexp [— At + i(kr = k)],

where K, and Kk, are real wave numbers along the x and y directions; A =Ap+i)\; is the complex decrement of
the perturbations. Taking into account the form (7.1) of the perturbations, we finally obtain dimensionless
equations for the perturbation amplitudes

-———;T ! T"T——“'/.l —IT?."(—‘——‘/.! — k= Z'_;,i (7.2)
U ‘ i . )
WLN —i\?l‘——/,)lp——r—i(
{ a Sab Iy ab B
T (0 = K20) = (220 — v 20, =0
u t N T;.” 0
Pr b ("T—T‘ — AUy Pr Up = O’
2PORS Ga a
Ra = (1 f’)—;7- Uy = — Ty o ¥ K= A4 ke
Boundary conditions are
ve= s o= for z= =1
(7.3)

It is assumed that perturbations of the velocity and temperature of the particle cloud vanish at the upper
boundary of the layer.

The boundary-value problem (7.2), (7.3) determines the spectrum of perturbation decrements and the
stability limits for an equilibrium layer of a fluid containing added particles. The Runge ~Kutta —Merson
stepwise method of integration is also used to solve this boundary-value problem.

§ 8. Thepresence of added particles shows up primarily in the spectrum of perturbation decrements. In
contrast to the speetrum for a layer of pure fluid and the spectrum for a layer with transverse seepage of
fluid [9, 14], the perturbation spectrum is now considerably richer because of the appearance of perturbations
associated with the particle cloud. As shown by calculations, however, perturbations associated with the trans-
port medium remain responsible for the instability of the equilibrium state.

Transverse motion of the particles leads to a considerable change in the perturbation spectrum for a
stationary layer of pure fluid. Oscillational perturbations now appear in the spectrum; they arise as the re-
sult of coalescence of real levels. With an increase in Rayleigh number, these complex-conjugate pairs break

down into two real levels. Instability, as in the case of a stationary layer of pure fluid, is caused by the real
branches of the spectrum and has a monotonic nature.

The effect of particle settling rate on the stability of a layer is illustrated in Fig. 5, which shows the
dependence of the minimum critical Rayleigh number Ray, on the particle settling rate ug (or, which comes to
the same thing, on the Galileo number) (Pr=0.73, 2 =0.1, 1,=0.00452, T7=0.01336). Layer stability rises
rapidly with increase in iusl. The wavelength of the most dangerous perturbations decreases. In a layer of
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air 2 cm thick, motion of wood particles at a velocity = 20 cm/sec @ =0.1, r=0.007 em) increases the stability
by afactor of almost 17, With an increase inthe particle settling rate, however, the rate of rise in the minimum
critical Rayleigh number slows down (for Jug|s 150).

With an increase in particle settling rate, a thermal boundary layer begins to form at the lower boundary
of the layer ("blowup" of the gas temperature distribution occurs). As a result, the effective thickness of the
stratified layer of gas is decreased (hggr<h). The characteristic temperature difference of 26 remains fixed
in this case. The critical temperature difference is found from the condition (1 4 a) gﬁ@hi,,/vx = const, and
therefore the critical Rayleigh number, which is determined in the usual manner from the halfwidth h of the
layer, is increased in proportion to the decrease in heff, i.e., to the rise in Iusl. This occurs as long as the
particles which "blowup" the distribution of gas temperature increase the thickness of the thermal boundary
layer at the lower surface. It turns out that at high values of the settling rate, further increase leads to in-
significant distortion of the established distribution of gas temperature and so to a small rise in stabilizing
effect. :

Intensification of the distorting effect of particles on the distribution of gas temperature is also observed
when there is an increase in the mass concentration a of the additive. The stabilizing effect of the particles
on equilibrium stability increases in this case. With an increase in the mass concentration a by a factor of
two from 0.1 to 0.2, the minimum critical Rayleigh number increases from 770 to 1980 and the critical wave
number ky, increases from 2.19 to 2.77.

Figure 6 shows the dependence of the minimum critical Rayleigh number on the Prandtl number and on
the relative heat capacity b of the particles (a=0.1, Ga/Pr=43,600, 7,=0.00452). The curve for Ray, =Ray,(Pr)
was plotted for b=2.,7 and the curve for Ray, =Ran,(b) was plotted for Pr=1. With an increase in Prandtl num-
ber (1072 = Pr =< 10%), there is a reduction in Ray, by a factor of more than two (Rap,~ 2000 for Pr=0.1 and
Rap ~ 1000 for Pr=6). However, convective equilibrium stability in our case is much higher than the stability
of a pure fluid. Stability rises with an increase in the relative heat capacity b of the particles. Particles
having a higher heat capacity better absorb the thermal perturbations that are the most dangerous,

The behavior of the minimum critical Rayleigh number Ray, as a function of particle radius (or of re-
laxation time Ty) is similar to the behavior of the minimum critical Grashof number in the problem of the
stability of convective flow in a medium containing an additive in a vertical layer (see Fig. 4). An increase in
r leads to an increase in equilibrium stability up to some limiting value r, =0.004 at which Ray, =3125 (2=0.1,
Ga=31,830, Pr=0.73, b=2.7, py/0 =415). The stabilizing effect decreases when r>ry. The critical wave num-
ber ky,, increases with increase in r and reaches a value of 3.1 (for r~ 0,004 and the given values of the prob-
lem parameters), and then decreases with further increase in r. In contrast to the problem of the stability of
steady-state convective motion of a medium containing an additive (see Fig. 4), the increase in convective equi-
librium stability with increase in particle size is associated with a decrease in the length of dangerous standing
perturbations.

One should note in conclusion that the effect of settling particles on convective equilibrium stability in a
horizontal layer of fluid is similar in many respects to the effect of transverse seepage of fluid [9, 14, 15].

The author thanks E. M. Zhukhovitskii for directing the work, V. E. Nakoryakov and participants in the
seminars directed by him, and also A. G. Kirdyashkin for providing valuable discussions of the results.
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HEAT EXCHANGE BETWEEN A SELECTIVELY
EMITTING LIQUID AND A LAMINAR GAS FLOW
IN THE PRESENCE OF AN EXTERNAL SOURCE
OF RADIATION

N. A. Rubtsov and A. M. Shvartsbhurg ' UDC 536.24

An investigation is conducted in the solution of a number of practical problems of the radiative
and combined heat exchange in nonuniform systems having widely different physical properties.
The processes of thermal interaction between the ocean and the atmosphere have been treated
in the paper [1], the effect of thermal radiation on the melting and solidification of semitrans-
parent erystals has been investigated in [2], the flow of a selectively emitting gas around the
lateral surface of an object evaporating under the action of radiative heating has been discussed
in [3], and heat transfer from a jet to the molten mass of glass in a glassmaking furnace tank
has been investigated in [4]. The radiative and combined heat exchange between a selectively
emitting liquid and a transparent heat-conducting laminar gas flow in the case of a specified
external thermal radiation field is discussed in this paper. The energy conservation equations
are set up taking into account the heat transfer by radiation, convection, and molecular thermal
conduction. A differential approximation is used in calculating the values of the radiation fluxes.
A system of fundamental computational equations is solved by the method of finite differences
and iterations and by the Runge —Kutta method. The resulis of the calculations are presented

in the form of graphs.

CONVENTIONAL NOTATION

Bo=dpeyp/o (Ty—Tp,)? is the Boltzmann number; Iw =0 (T,— Ty )3a/A is the Ivanov number; Buy =wya is
the Bouguer number; Re=da/v is the Reynolds number; Bi=a g/ is the Biot number; 0={T—Ty)/(Ty—Tyy)
is the dimensionless temperature; U and V are the longitudinal and transverse dimensionless velocity com-
ponents, respectively; U, is the dimensionless velocity of the unperturbed gas flow; P=p/pd® is the dimension-
less pressure; p =pq/p Ty is the dimensionless dynamic viscosity coefficient: Eq A:E(')I ;\/o—('1‘0~Tm)‘i is the
dimensionless energy density of the radiation from an absolutely black body; qx is the dimensionless radiation
flux; qris the dimensionless flux of heat transported by conduction; 9n=g7tq is the dimensionless net heat
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